Midlevel Ventilation's Constraint on Tropical Cyclone Intensity

نویسندگان

  • Kerry Emanuel
  • BRIAN TANG
  • KERRY EMANUEL
چکیده

Midlevel ventilation, or the flux of low-entropy air into the inner core of a tropical cyclone (TC), is a hypothesized mechanism by which environmental vertical wind shear can constrain a tropical cyclone’s intensity. An idealized framework based on steadiness, axisymmetry, and slantwise neutrality is developed to assess how ventilation affects tropical cyclone intensity via two possible pathways: the first through downdrafts outside the eyewall and the second through eddy fluxes directly into the eyewall. For both pathways, ventilation has a detrimental effect on tropical cyclone intensity by decreasing the maximum steady-state intensity significantly below the potential intensity, imposing a minimum intensity below which a TC will unconditionally decay, and providing an upper-ventilation bound beyond which no steady tropical cyclone can exist. Ventilation also decreases the thermodynamic efficiency as the eyewall becomes less buoyant relative to the environment, which compounds the effects of ventilation alone. Finally, the formulation presented in this study is shown to be invariant across a range of thermodynamic environments after a suitable normalization and shows little sensitivity to external parameters.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Environmental control of tropical cyclones in CMIP5: A ventilation perspective

The ventilation index serves as a theoretically based metric to assess possible changes in the statistics of tropical cyclones to combined changes in vertical wind shear, midlevel entropy deficit, and potential intensity in climate models. Model output from eight Coupled Model Intercomparison Project 5 models is used to calculate the ventilation index. The ventilation index and its relationship...

متن کامل

An environmentally forced tropical cyclone hazard model

A physics-based statistical stochastic system is developed for estimating the long-term hazard of rare, high impact landfall events globally from ensembles of synthetic tropical cyclones. There are three components representing the complete storm lifetime: an index-based genesis model, a beta-advection track model and an autoregressive intensity model. All three components depend upon the local...

متن کامل

Autoregressive Modeling for Tropical Cyclone Intensity Climatology

An autoregressive model is developed to simulate the climatological distribution of global tropical cyclone (TC) intensity. The model consists of two components: a regression-based deterministic component that advances the TC intensity in time and depends on the storm state and surrounding large-scale environment and a stochastic forcing. Potential intensity, deep-layer mean vertical shear, and...

متن کامل

Scale Interactions during the Formation of Typhoon Irving

The development of Typhoon Irving is investigated using a variety of data, including special research aircraft data from the Tropical Cyclone Motion (TCM-92) experiment, objective analyses, satellite data, and traditional surface and sounding data. The development process is treated as a dry-adiabatic vortex dynamics problem, and it is found that environmental and mesoscale dynamics mutually en...

متن کامل

Implications of Summertime Sea Level Pressure Anomalies in the Tropical Atlantic Region

This study explores the inverse relationship between sea level pressure and tropical cyclones in the tropical Atlantic (TA). Upper-air observations, the National Centers for Environmental Prediction (formerly the National Meteorological Center)/National Center for Atmospheric Research (NCEP/NCAR) reanalysis, and regional SSTs provide clues as to the physics of this relationship using composite ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010